Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 15 de 15
1.
Nature ; 2024 May 08.
Article En | MEDLINE | ID: mdl-38720072

Psychedelic substances such as lysergic acid diethylamide (LSD) and psilocybin show potential for the treatment of various neuropsychiatric disorders1-3. These compounds are thought to mediate their hallucinogenic and therapeutic effects through the serotonin (5-hydroxytryptamine (5-HT)) receptor 5-HT2A (ref. 4). However, 5-HT1A also plays a part in the behavioural effects of tryptamine hallucinogens5, particularly 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT), a psychedelic found in the toxin of Colorado River toads6. Although 5-HT1A is a validated therapeutic target7,8, little is known about how psychedelics engage 5-HT1A and which effects are mediated by this receptor. Here we map the molecular underpinnings of 5-MeO-DMT pharmacology through five cryogenic electron microscopy (cryo-EM) structures of 5-HT1A, systematic medicinal chemistry, receptor mutagenesis and mouse behaviour. Structure-activity relationship analyses of 5-methoxytryptamines at both 5-HT1A and 5-HT2A enable the characterization of molecular determinants of 5-HT1A signalling potency, efficacy and selectivity. Moreover, we contrast the structural interactions and in vitro pharmacology of 5-MeO-DMT and analogues to the pan-serotonergic agonist LSD and clinically used 5-HT1A agonists. We show that a 5-HT1A-selective 5-MeO-DMT analogue is devoid of hallucinogenic-like effects while retaining anxiolytic-like and antidepressant-like activity in socially defeated animals. Our studies uncover molecular aspects of 5-HT1A-targeted psychedelics and therapeutics, which may facilitate the future development of new medications for neuropsychiatric disorders.

2.
Neuropsychopharmacology ; 49(6): 905-914, 2024 May.
Article En | MEDLINE | ID: mdl-38177696

The NMDA receptor (NMDAR) antagonist ketamine has shown great potential as a rapid-acting antidepressant; however, its use is limited by poor oral bioavailability and a side effect profile that necessitates in-clinic dosing. GM-1020 is a novel NMDAR antagonist that was developed to address these limitations of ketamine as a treatment for depression. Here, we present the preclinical characterization of GM-1020 alongside ketamine, for comparison. In vitro, we profiled GM-1020 for binding to NMDAR and functional inhibition using patch-clamp electrophysiology. In vivo, GM-1020 was assessed for antidepressant-like efficacy using the Forced Swim Test (FST) and Chronic Mild Stress (CMS), while motor side effects were assessed in spontaneous locomotor activity and on the rotarod. The pharmacokinetic properties of GM-1020 were profiled across multiple preclinical species. Electroencephalography (EEG) was performed to determine indirect target engagement and provide a potentially translational biomarker. These results demonstrate that GM-1020 is an orally bioavailable NMDAR antagonist with antidepressant-like efficacy at exposures that do not produce unwanted motor effects.


Antidepressive Agents , Receptors, N-Methyl-D-Aspartate , Animals , Antidepressive Agents/administration & dosage , Antidepressive Agents/pharmacology , Antidepressive Agents/pharmacokinetics , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Male , Rats , Mice , Administration, Oral , Rats, Sprague-Dawley , Biological Availability , Ketamine/administration & dosage , Ketamine/pharmacology , Depression/drug therapy , Motor Activity/drug effects , Dose-Response Relationship, Drug , Mice, Inbred C57BL , Excitatory Amino Acid Antagonists/administration & dosage , Excitatory Amino Acid Antagonists/pharmacology , Excitatory Amino Acid Antagonists/pharmacokinetics , Humans
3.
Br J Pharmacol ; 180(24): 3160-3174, 2023 12.
Article En | MEDLINE | ID: mdl-37489013

BACKGROUND AND PURPOSE: Opioid-induced respiratory depression limits the use of µ-opioid receptor agonists in clinical settings and is the main cause of opioid overdose fatalities. The relative potential of different opioid agonists to induce respiratory depression at doses exceeding those producing analgesia is understudied despite its relevance to assessments of opioid safety. Here we evaluated the respiratory depressant and anti-nociceptive effects of three novel opioids and relate these measurements to their in vitro efficacy. EXPERIMENTAL APPROACH: Respiration was measured in awake, freely moving male CD-1 mice using whole body plethysmography. Anti-nociception was measured using the hot plate test. Morphine, oliceridine and tianeptine were administered intraperitoneally, whereas methadone, oxycodone and SR-17018 were administered orally. Receptor activation and arrestin-3 recruitment were measured in HEK293 cells using BRET assays. KEY RESULTS: Across the dose ranges examined, all opioids studied depressed respiration in a dose-dependent manner, with similar effects at the highest doses, and with tianeptine and oliceridine showing reduced duration of effect, when compared with morphine, oxycodone, methadone and SR-17018. When administered at doses that induced similar respiratory depression, all opioids induced similar anti-nociception, with tianeptine and oliceridine again showing reduced duration of effect. These data were consistent with the in vitro agonist activity of the tested compounds. CONCLUSION AND IMPLICATIONS: In addition to providing effective anti-nociception, the novel opioids, oliceridine, tianeptine and SR-17018 depress respiration in male mice. However, the different potencies and kinetics of effect between these novel opioids may be relevant to their therapeutic application in different clinical settings.


Analgesics, Opioid , Respiratory Insufficiency , Male , Humans , Animals , Mice , Oxycodone/pharmacology , HEK293 Cells , Morphine/pharmacology , Respiratory Insufficiency/chemically induced , Respiratory Insufficiency/drug therapy , Methadone/adverse effects
4.
Br J Pharmacol ; 179(14): 3875-3885, 2022 07.
Article En | MEDLINE | ID: mdl-35297034

BACKGROUND AND PURPOSE: Mitragynine, the major alkaloid in Mitragyna speciosa (kratom), is a partial agonist at the µ opioid receptor. CYP3A-dependent oxidation of mitragynine yields the metabolite 7-OH mitragynine, a more efficacious µ receptor agonist. While both mitragynine and 7-OH mitragynine can induce anti-nociception in mice, recent evidence suggests that 7-OH mitragynine formed as a metabolite is sufficient to explain the anti-nociceptive effects of mitragynine. However, the ability of 7-OH mitragynine to induce µ receptor-dependent respiratory depression has not yet been studied. EXPERIMENTAL APPROACH: Respiration was measured in awake, freely moving, male CD-1 mice, using whole body plethysmography. Anti-nociception was measured using the hot plate assay. Morphine, mitragynine, 7-OH mitragynine and the CYP3A inhibitor ketoconazole were administered orally. KEY RESULTS: The respiratory depressant effects of mitragynine showed a ceiling effect, whereby doses higher than 10 mg·kg-1 produced the same level of effect. In contrast, 7-OH mitragynine induced a dose-dependent effect on mouse respiration. At equi-depressant doses, both mitragynine and 7-OH mitragynine induced prolonged anti-nociception. Inhibition of CYP3A reduced mitragynine-induced respiratory depression and anti-nociception without affecting the effects of 7-OH mitragynine. CONCLUSIONS AND IMPLICATIONS: Both the anti-nociceptive effects and the respiratory depressant effects of mitragynine are partly due to its metabolic conversion to 7-OH mitragynine. The limiting rate of conversion of mitragynine into its active metabolite results in a built-in ceiling effect of the mitragynine-induced respiratory depression. These data suggest that such 'metabolic saturation' at high doses may underlie the improved safety profile of mitragynine as an opioid analgesic.


Mitragyna , Respiratory Insufficiency , Secologanin Tryptamine Alkaloids , Animals , Cytochrome P-450 CYP3A , Male , Mice , Receptors, Opioid, mu/agonists , Secologanin Tryptamine Alkaloids/pharmacology
5.
J Med Chem ; 64(22): 16553-16572, 2021 11 25.
Article En | MEDLINE | ID: mdl-34783240

The leaves of Mitragyna speciosa (kratom), a plant native to Southeast Asia, are increasingly used as a pain reliever and for attenuation of opioid withdrawal symptoms. Using the tools of natural products chemistry, chemical synthesis, and pharmacology, we provide a detailed in vitro and in vivo pharmacological characterization of the alkaloids in kratom. We report that metabolism of kratom's major alkaloid, mitragynine, in mice leads to formation of (a) a potent mu opioid receptor agonist antinociceptive agent, 7-hydroxymitragynine, through a CYP3A-mediated pathway, which exhibits reinforcing properties, inhibition of gastrointestinal (GI) transit and reduced hyperlocomotion, (b) a multifunctional mu agonist/delta-kappa antagonist, mitragynine pseudoindoxyl, through a CYP3A-mediated skeletal rearrangement, displaying reduced hyperlocomotion, inhibition of GI transit and reinforcing properties, and (c) a potentially toxic metabolite, 3-dehydromitragynine, through a non-CYP oxidation pathway. Our results indicate that the oxidative metabolism of the mitragynine template beyond 7-hydroxymitragynine may have implications in its overall pharmacology in vivo.


Secologanin Tryptamine Alkaloids/pharmacology , Animals , Mice , Mice, Inbred C57BL , Mice, Knockout , Oxidation-Reduction , Receptors, Opioid, mu
6.
Nat Commun ; 12(1): 3858, 2021 06 22.
Article En | MEDLINE | ID: mdl-34158473

Mitragynine (MG) is the most abundant alkaloid component of the psychoactive plant material "kratom", which according to numerous anecdotal reports shows efficacy in self-medication for pain syndromes, depression, anxiety, and substance use disorders. We have developed a synthetic method for selective functionalization of the unexplored C11 position of the MG scaffold (C6 position in indole numbering) via the use of an indole-ethylene glycol adduct and subsequent iridium-catalyzed borylation. Through this work we discover that C11 represents a key locant for fine-tuning opioid receptor signaling efficacy. 7-Hydroxymitragynine (7OH), the parent compound with low efficacy on par with buprenorphine, is transformed to an even lower efficacy agonist by introducing a fluorine substituent in this position (11-F-7OH), as demonstrated in vitro at both mouse and human mu opioid receptors (mMOR/hMOR) and in vivo in mouse analgesia tests. Low efficacy opioid agonists are of high interest as candidates for generating safer opioid medications with mitigated adverse effects.


Mitragyna/chemistry , Plant Extracts/pharmacology , Receptors, Opioid, mu/agonists , Secologanin Tryptamine Alkaloids/pharmacology , Analgesics/chemistry , Analgesics/pharmacology , Animals , Ethylene Glycol/chemistry , Humans , Mice, Knockout , Models, Chemical , Molecular Structure , Plant Extracts/chemistry , Protein Binding , Receptors, Opioid, mu/genetics , Receptors, Opioid, mu/metabolism , Secologanin Tryptamine Alkaloids/chemistry
9.
ACS Cent Sci ; 5(6): 992-1001, 2019 Jun 26.
Article En | MEDLINE | ID: mdl-31263758

Mitragyna speciosa, more commonly known as kratom, is a plant native to Southeast Asia, the leaves of which have been used traditionally as a stimulant, analgesic, and treatment for opioid addiction. Recently, growing use of the plant in the United States and concerns that kratom represents an uncontrolled drug with potential abuse liability, have highlighted the need for more careful study of its pharmacological activity. The major active alkaloid found in kratom, mitragynine, has been reported to have opioid agonist and analgesic activity in vitro and in animal models, consistent with the purported effects of kratom leaf in humans. However, preliminary research has provided some evidence that mitragynine and related compounds may act as atypical opioid agonists, inducing therapeutic effects such as analgesia, while limiting the negative side effects typical of classical opioids. Here we report evidence that an active metabolite plays an important role in mediating the analgesic effects of mitragynine. We find that mitragynine is converted in vitro in both mouse and human liver preparations to the much more potent mu-opioid receptor agonist 7-hydroxymitragynine and that this conversion is mediated by cytochrome P450 3A isoforms. Further, we show that 7-hydroxymitragynine is formed from mitragynine in mice and that brain concentrations of this metabolite are sufficient to explain most or all of the opioid-receptor-mediated analgesic activity of mitragynine. At the same time, mitragynine is found in the brains of mice at very high concentrations relative to its opioid receptor binding affinity, suggesting that it does not directly activate opioid receptors. The results presented here provide a metabolism-dependent mechanism for the analgesic effects of mitragynine and clarify the importance of route of administration for determining the activity of this compound. Further, they raise important questions about the interpretation of existing data on mitragynine and highlight critical areas for further research in animals and humans.

10.
Int J Drug Policy ; 70: 70-77, 2019 08.
Article En | MEDLINE | ID: mdl-31103778

Kratom (Mitragyna speciosa) is a tree-like plant indigenous to Southeast Asia. Its leaves, and the teas brewed from them have long been used by people in that region to stave off fatigue and to manage pain and opioid withdrawal. Evidence suggests kratom is being increasingly used by people in the United States and Europe for the self-management of opioid withdrawal and treatment of pain. Recent studies have confirmed that kratom and its chemical constituents have potentially useful pharmacological actions. However, there have also been increasing numbers of reports of adverse effects resulting from use of kratom products. In August 2016, the US Drug Enforcement Administration announced plans to classify kratom and its mitragynine constituents as Schedule I Controlled Substances, a move that triggered a massive response from pro-kratom advocates. The debate regarding the risks, and benefits and safety of kratom continues to intensify. Kratom proponents tout kratom as a safer and less addictive alternative to opioids for the management of pain and opioid addiction. The anti-kratom faction argues that kratom, itself, is a dangerous and addictive drug that ought to be banned. Given the widespread use of kratom and the extensive media attention it is receiving, it is important for physicians, scientists and policy makers to be knowledgeable about the subject. The purpose of this commentary is to update readers about recent developments and controversies in this rapidly evolving area. All of the authors are engaged in various aspects of kratom research and it is our intention to provide a fair and balanced overview that can form the basis for informed decisions on kratom policy. Our conclusions from these analyses are: (a) User reports and results of preclinical studies in animals strongly suggest that kratom and its main constituent alkaloid, mitragynine may have useful activity in alleviating pain and managing symptoms of opioid withdrawal, even though well-controlled clinical trials have yet to be done. (b) Even though kratom lacks many of the toxicities of classic opioids, there are legitimate concerns about the safety and lack of quality control of purported "kratom" products that are being sold in the US. (c) The issues regarding the safety and efficacy of kratom and its mitragynine constituent can only be resolved by additional research. Classification of the Mitragyna alkaloids as Schedule I controlled substances would substantially impede this important research on kratom.


Drug and Narcotic Control/legislation & jurisprudence , Mitragyna/adverse effects , Plant Extracts/adverse effects , Plant Extracts/therapeutic use , Secologanin Tryptamine Alkaloids/adverse effects , Animals , Humans , Plant Extracts/pharmacology , Plant Leaves/adverse effects , Secologanin Tryptamine Alkaloids/pharmacology , Secologanin Tryptamine Alkaloids/therapeutic use , Substance Withdrawal Syndrome/drug therapy
11.
Neuropharmacology ; 134(Pt A): 108-120, 2018 05 15.
Article En | MEDLINE | ID: mdl-28830758

The leaves of Mitragyna speciosa (commonly known as kratom), a tree endogenous to parts of Southeast Asia, have been used traditionally for their stimulant, mood-elevating, and analgesic effects and have recently attracted significant attention due to increased use in Western cultures as an alternative medicine. The plant's active alkaloid constituents, mitragynine and 7-hydroxymitragynine, have been shown to modulate opioid receptors, acting as partial agonists at mu-opioid receptors and competitive antagonists at kappa- and delta-opioid receptors. Furthermore, both alkaloids are G protein-biased agonists of the mu-opioid receptor and therefore, may induce less respiratory depression than classical opioid agonists. The Mitragyna alkaloids also appear to exert diverse activities at other brain receptors (including adrenergic, serotonergic, and dopaminergic receptors), which may explain the complex pharmacological profile of raw kratom extracts, although characterization of effects at these other targets remains extremely limited. Through allometric scaling, doses of pure mitragynine and 7-hydroxymitragynine used in animal studies can be related to single doses of raw kratom plant commonly consumed by humans, permitting preliminary interpretation of expected behavioral and physiological effects in man based on this preclinical data and comparison to both anecdotal human experience and multiple epidemiological surveys. Kratom exposure alone has not been causally associated with human fatalities to date. However, further research is needed to clarify the complex mechanism of action of the Mitragyna alkaloids and unlock their full therapeutic potential. This article is part of the Special Issue entitled 'Designer Drugs and Legal Highs.'


Chemistry, Pharmaceutical , Neuropharmacology , Plant Extracts/poisoning , Substance-Related Disorders/drug therapy , Animals , Humans , Plants, Medicinal , Secologanin Tryptamine Alkaloids , Substance-Related Disorders/etiology
12.
Neuropsychopharmacology ; 42(10): 2052-2063, 2017 Sep.
Article En | MEDLINE | ID: mdl-28303899

Depression is a debilitating chronic illness that affects around 350 million people worldwide. Current treatments, such as selective serotonin reuptake inhibitors, are not ideal because only a fraction of patients achieve remission. Tianeptine is an effective antidepressant with a previously unknown mechanism of action. We recently reported that tianeptine is a full agonist at the mu opioid receptor (MOR). Here we demonstrate that the acute and chronic antidepressant-like behavioral effects of tianeptine in mice require MOR. Interestingly, while tianeptine also produces many opiate-like behavioral effects such as analgesia and reward, it does not lead to tolerance or withdrawal. Furthermore, the primary metabolite of tianeptine (MC5), which has a longer half-life, mimics the behavioral effects of tianeptine in a MOR-dependent fashion. These results point to the possibility that MOR and its downstream signaling cascades may be novel targets for antidepressant drug development.


Antidepressive Agents, Tricyclic/pharmacology , Receptors, Opioid, mu/metabolism , Thiazepines/pharmacology , Analgesics, Opioid/pharmacology , Animals , Antidepressive Agents, Tricyclic/metabolism , Antidepressive Agents, Tricyclic/pharmacokinetics , Depressive Disorder/drug therapy , Depressive Disorder/metabolism , Dose-Response Relationship, Drug , Drug Tolerance , HEK293 Cells , Humans , Male , Mice, Inbred C57BL , Mice, Knockout , Molecular Structure , Morphine/pharmacology , Receptors, Opioid, mu/agonists , Receptors, Opioid, mu/genetics , Thiazepines/metabolism , Thiazepines/pharmacokinetics
13.
J Am Chem Soc ; 138(21): 6754-64, 2016 06 01.
Article En | MEDLINE | ID: mdl-27192616

Mu-opioid receptor agonists represent mainstays of pain management. However, the therapeutic use of these agents is associated with serious side effects, including potentially lethal respiratory depression. Accordingly, there is a longstanding interest in the development of new opioid analgesics with improved therapeutic profiles. The alkaloids of the Southeast Asian plant Mitragyna speciosa, represented by the prototypical member mitragynine, are an unusual class of opioid receptor modulators with distinct pharmacological properties. Here we describe the first receptor-level functional characterization of mitragynine and related natural alkaloids at the human mu-, kappa-, and delta-opioid receptors. These results show that mitragynine and the oxidized analogue 7-hydroxymitragynine, are partial agonists of the human mu-opioid receptor and competitive antagonists at the kappa- and delta-opioid receptors. We also show that mitragynine and 7-hydroxymitragynine are G-protein-biased agonists of the mu-opioid receptor, which do not recruit ß-arrestin following receptor activation. Therefore, the Mitragyna alkaloid scaffold represents a novel framework for the development of functionally biased opioid modulators, which may exhibit improved therapeutic profiles. Also presented is an enantioselective total synthesis of both (-)-mitragynine and its unnatural enantiomer, (+)-mitragynine, employing a proline-catalyzed Mannich-Michael reaction sequence as the key transformation. Pharmacological evaluation of (+)-mitragynine revealed its much weaker opioid activity. Likewise, the intermediates and chemical transformations developed in the total synthesis allowed the elucidation of previously unexplored structure-activity relationships (SAR) within the Mitragyna scaffold. Molecular docking studies, in combination with the observed chemical SAR, suggest that Mitragyna alkaloids adopt a binding pose at the mu-opioid receptor that is distinct from that of classical opioids.


Mitragyna/chemistry , Narcotic Antagonists/chemical synthesis , Receptors, Opioid, mu/agonists , Secologanin Tryptamine Alkaloids/chemistry , Drug Partial Agonism , Humans , Molecular Docking Simulation , Narcotic Antagonists/chemistry , Narcotic Antagonists/pharmacology , Protein Binding , Receptors, Opioid, delta/antagonists & inhibitors , Receptors, Opioid, kappa/antagonists & inhibitors , Secologanin Tryptamine Alkaloids/isolation & purification , Secologanin Tryptamine Alkaloids/pharmacology , Structure-Activity Relationship
14.
ACS Chem Biol ; 11(1): 77-87, 2016 Jan 15.
Article En | MEDLINE | ID: mdl-26517751

Modulation of growth factor signaling pathways in the brain represents a new experimental approach to treating neuropsychiatric disorders such as depression, anxiety, and addiction. Neurotrophins and growth factors exert synaptic, neuronal, and circuit level effects on a wide temporal range, which suggests a possibility of rapid and lasting therapeutic effects. Consequently, identification of small molecules that can either enhance the release of growth factors or potentiate their respective pathways will provide a drug-like alternative to direct neurotrophin administration or viral gene delivery and thus represents an important frontier in chemical biology and drug design. Glial cell line-derived neurotrophic factor (GDNF), in particular, has been implicated in marked reduction of alcohol consumption in rodent addiction models, and the natural product ibogaine, a substance used traditionally in ritualistic ceremonies, has been suggested to increase the synthesis and release of GDNF in the dopaminergic system in rats. In this report, we describe a novel iboga analog, XL-008, created by unraveling the medium size ring of the ibogamine skeleton, and its ability to induce release of GDNF in C6 glioma cells. Additionally, XL-008 potentiates the release of GDNF induced by fibroblast growth factor 2 (FGF2), another neurotrophin implicated in major depressive disorder, increasing potency more than 2-fold (from 7.85 ± 2.59 ng/mL to 3.31 ± 0.98 ng/mL) and efficacy more than 3-fold. The GDNF release by both XL-008 and the FGF2/XL-008 mixture was found to be mediated through the MEK and PI3K signaling pathways but not through PLCγ in C6 glioma cells.


Bridged-Ring Compounds/pharmacology , Fibroblast Growth Factor 2/pharmacology , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Neuroglia/drug effects , Animals , Bridged-Ring Compounds/chemistry , Molecular Structure , Rats
15.
J Org Chem ; 80(4): 2062-71, 2015 Feb 20.
Article En | MEDLINE | ID: mdl-25633249

The iboga alkaloids have attracted considerable attention in both the scientific community and popular media due to their reported ability to reverse or markedly diminish cravings for, and self-administration of, the major drugs of abuse. We have developed three new intramolecular C-H functionalization procedures leading to the core seven-membered ring of the iboga skeleton, a cyclization that proved to be highly challenging. The electrophilic palladium salt Pd(CH3CN)4(BF4)2 was effective for the cyclization of diverse N-(2-arylethyl)isoquinuclidines with yields of 10-35%. A two-step, bromination-reductive Heck reaction protocol was also effective for the synthesis of ibogamine in 42% yield. Finally, a direct Ni(0)-catalyzed C-H functionalization provided the benzofuran analogues of ibogamine (74%) and epi-ibogamine (38%). Although each approach suffers from significant shortcomings, in combination, the methods described provide practical routes to diverse ibogamine analogues.


Alkaloids/chemical synthesis , Alkenes/chemistry , Heterocyclic Compounds/chemistry , Tabernaemontana/chemistry , Alkaloids/chemistry , Catalysis , Cyclization , Molecular Structure , Organometallic Compounds/chemistry , Palladium/chemistry
...